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1. Introduction
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D for dynamics: the economy evolves over time; economic decisions are made over
time

S for stochastic: the economy is exposed to external shocks that can not be
anticipated or forecasted
G for general: considers all markets that are important for the functioning of a
modern economy

E for equilibrium: private agents and public decision-making institutions try to do
the best they can with all available information (optimal decision making)

What is a DSGE macroeconomic model?
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As Stanley Fischer put it here:

"Let me turn to [...] macroeconomic models and their role in assisting the FOMC's
decisionmaking. The Board staff maintains several models; I will focus on the
FRB/US model, the best known and most used of the models the Board staff has at
its disposal. FRB/US is an estimated, large-scale, general-equilibrium, New
Keynesian model."

in: "I'd rather have Bob Solow than an econometric model, but ...", Speech by Stanley
Fischer, Vice Chair of the Board of Governors of the Federal Reserve System, at the
Warwick Economics Summit, 11 February 2017.

How relevant are DSGE models?
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The model is linear

It has three types of variables:
a forward-looking variable/block: 
a predetermined variable/block: 

a contemporaneous (or static) variable/block: 

It is an uncoupled model: each variable/block can be solved separately from all
other variables/blocks.

This property means that we can solve the model with pencil and paper.

The simplest possible model
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 is a backward-looking (or pre-determined) variable
 is a random shock

 is a forward-looking variable

 is a contemporaneous (or static) variable

 are parameters

The three equations
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2. Solution: backward-looking block
By pencil-and-paper
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To avoid explosive behavior on the solution obtained in the previous slide:

... we have to impose the condition: .

If , the solution to this block at the th iteration (when ) is:

... where  is the deterministic steady state of 

Solution to the backward looking block
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Consider the following parameter values:

In the previous slide, we got the solution:

So, with those parameter values, eq. (1') can be rewritten as:

A numerical example
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In eq. (2) in the previous slide, we got:

From eq. (2'), we can easily conclude:

The deterministic steady state is : 0

The current value of  depends only on the shocks it suffered in the past.

Consider that the process is on its deterministic steady-state , and suffers a
positive shock of  at period .

What happens to the value of  over time, if there are no more shocks?

A numerical example (cont.)
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Using the original equation , and :

But , as it was assumed that . So, we have:

As there are no more shocks in this exercise, for period  we obtain:

Doing the same for  and , we get:

So, the solution will be: 

A simple solution
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The method used above is not very efficient. Suppose the shock occurred long ago,
for example, , and we wanted to compute the value of .

According to the previous method, we had to perform 50 operations to get the
value of .

There is a better way to obtain that value: use directly eq. (2'):

So, what is the value of , given that a shock occurred 3 periods ago ?

A more efficient solution
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By the same way, what is the value of , given that a shock occurred 2 periods ago
?

Repeating the same exercise, we can collect the other results.

For example, what is the value of  if the shock occurs in the current period?

So, the solution will be the same:

A more efficient solution (cont.)

13



As expected, the deterministic part of  remains constant:

The change occurs in the random part of this process :

Deterministic part vs random part
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3. Solution: forward-looking block
By pencil-and-paper
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To avoid explosive behavior on the solution

... we have to impose the condition: .

We get the following solution to this block at the -th iteration, as :

The solution to eq. (3), can be written as:

Solution avoiding explosive behavior
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The solution to eq.(4) depends on the type of information we may have about the
observations of  over time:

What is the value of  in eq. (4)?

It depends on whether we compute the unconditional mean of  , or its
conditional mean.

The unconditional mean is just the deterministic value of its steady state: .

The conditional mean is computed on the basis that we know the value of .
Next we show how to compute these two expected values.

Unconditional vs conditional expectations
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The expected-unconditional value of  is the deterministic steady-state:

Therefore, the solution to  is obtained by inserting eq. (5) into (4):

 solution with unconditional expectations

18



In the previous slide we obtained that the solution to  is given by:

Considering the information we have about the parameters:

So, we get:

Therefore, with unconditional expectations, the value of  will be:

 solution with unconditional expectations (cont.)
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As the expected-conditional value of  is given by:

And as we have the information that

Then,

Therefore, the solution to  is obtained by inserting eq. (7a) into (4):

 solution with conditional expectations
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From eq.(7b) in the previous slide, we got:

This is a geometric sum, with a solution:

Therefore, it is easy yo see that:

If  moves away from its steady-state ,  will change because:

 solution with conditional expectations (cont.)
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As from a previous slide we know that  suffered a shock in period :

It is very simple to calculate the values 0f  by using eq. (9):

So,  moved away from its steady state  due to the impact that  exerts
upon .

And  moved away from its steady state  due to the shock it suffered in
period .

 solution with conditional expectations (cont.)
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4. Solution: static block
By pencil-and-paper
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The static block is given by the equation:

From the previous slide, we know that:

From eq. (3), we know that: . So:

Once we know the values of  and , it is immediate to calculate .

Assuming that  and , we get:

Solution: no iterations needed
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The simplest model: IRFs

An image of our simple model
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5. The Blanchard-Kahn conditions

Blanchard, O. and Kahn, C. M. (1980). The solution of linear difference models under
rational expectations. Econometrica, 48(5), 1305-1311.
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All models in modern macroeconomics can not be solved by pencil and paper.
They may be non-linear.

Their blocks be coupled in contrast to the case above.

Blanchard-Kahn (1980) developed a technique that allows us to solve any linear
model, no matter how intricate its blocks might be.

This technique is based on the Jordan decomposition of square matrices.

In this class, we do not expect students to replicate the proof; but students should
understand its logic.

It is crucial to understand what the Blanchard-Kahn stability conditions mean.

More complicated models
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 is a predetermined variable (or set of variables)

 is a random shock (or a sequence of random shocks)

 is a forward-looking variable (or a set of variables)
 and  solve the predetermined variable (or block)

 solves the forward-looking variable (or block)

The strategy of solving a DSGE model
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Write the model in state space form

 are square matrices representing the parametric structure of the model

 are vectors with the endogenous variables, and  is a vector of exogenous
random shocks.  is the usual conditional expectations operator.  is a vector
with constants, and for simplicity, we drop it from the model.

Multiplying both sides of (9) by , leads to:

The model in state-space representation
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Suppose we have a square matrix 

The Jordan decomposition of  is given by:

 contains as columns the eigenvectors of 

 is a diagonal matrix containing the eigenvalues of  in the main diagonal.

 is the inverse of 

The Jordan Decomposition
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Our system was given by (10):

Apply the decomposition  to (10):

Multiply both sides by :

Apply the Jordan Decomposition
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Let us assume that there are no shocks affecting the forward-looking block:

Next, we apply a partition to the matrices: , , :

Our transformed model looks much easier now:

Matrices partition
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Using these partitions, the solution will be given by (see detailed demonstration in
Appendix A):

The solution to the model
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When solving these models, the most demanding task is to apply the correct
partition to these three matrices.

Suppose a model with 1 backward-looking variable, one static, and the third is a
forward-looking variable (as the simple model above).

The partitions should be as follows:

 

Partition of matrices , , 
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2 forward-looking, 2 non-forward-looking variables

  

Partition of matrices , , 
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Suppose we have a model with 5 variables:
2 forward-looking

2 backward-looking (or predetermined)

1 contemporaneous (static)
To secure a unique and stable solution, the matrix  should provide:

2 eigenvalues greater than 1, , (forward-looking block is stable)

2 eigenvalues less than 1,  (backward-looking block is stable)
1 eigenvalue is 0, , (the static variable has no dynamics of its own)

If these conditions are violated, one of the blocks shows explosive behavior, which
violates what we observe in reality.

The Blanchard-Kahn stability conditions
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6. Back to the "simplest model"
Solving it with the Blanchard-Kahn method ... and a computer
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The original model:

To write the model in matrix form, put all variables expressed at  on the
system's left side, those at  on the right side, and constants at the end.

So, the model can be written as:

Prepare the model for matrix form
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left hand-side: endogenous variables at 

right hand-side: endogenous variables at  , shocks , constants

Detailed specification of the model:

The model in matrix form
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Detailed specification of the model:

The model in state space representation:

The model in matrix form (cont.)
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A = zeros(3,3) 
B = zeros(3,3)
C = zeros(3,3)

A[1,1] = 1.0
A[2,1] =  -ϕ
A[2,2] = 1.0
A[2,3] =  -μ
A[3,3] =   β

B[1,1] =   ρ
B[3,1] =  -θ
B[3,3] = 1.0

C[1,1] = 1.0

D =[φ ; 0.0 ; -α]

The state space representation passed into Julia
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This nootebook follows step-by-step the BK approach:
Write the model in state-space form.
Check the BK stability conditions

Perform the matrices' partitions

Simulate the model's response to an isolated shock upon  with a magnitude
of .

And we also implement:
A simulation of the model's response to systematic white-noise shocks on .
A computation of the: (i) autocorrelation function for each variable in this
model, (ii) cross-correlation function, (iii) standard deviation.

Using the notebook "Simple_Model.jl"
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Appendix A
Proof of the The Blanchard-Kahn method (not required)
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Write the model in state space form:

 are square matrices representing the parametric structure of the model

 are vectors with the endogenous variables, and  is a vector of exogenous
random shocks.  is the usual conditional expectations operator.  is a vector
with constants, and for simplicity, we drop it from the model.

Multiplying both sides of (4) by , leads to:

The model in state-space representation
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The Jordan decomposition is given by:

 contains as columns the eigenvectors of  is a diagonal matrix containing
the eigenvalues of  in the main diagonal.

Apply the decomposition to (A2):

Multiply both sides by :

Apply the Jordan Decomposition
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Let us assume that there are no shocks affecting the forward-looking block:

Next, we apply a partition to the matrices: , , :

Our transformed model looks much easier now:

Matrices partition
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Transformed model written as a set of decoupled equations:

We can now apply our well known strategy. Iterate to:

Solve the predetermined transformed block and get the equilibrium levels of the
predetermined (backward-looking) variables:

Solve the forward-looking transformed block and get the equilibrium values of the
forward-looking variables:

System Written as two Decoupled Blocks
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Iterating forward this block, and as the shocks to this block are , we get:

If we assume 

Then, the only stable solution will be

Now, from the partition of  and , we know that

From (A3)=(A4), the forward-looking block only depends on predetermined one:

Solving the forward-looking block

48



Iterating forward this block, we get

If we assume that:

The process is stable, and from the partition of  we know that:

Now, inserting eq. (A5) into (A6), we can obtain:

Solving the predetermined block
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As from eq. (A7) we have

Then, for  we get:

But, as from eq. (Predetermined block) we have:

By mere substitution of (A8) and (A9) into (A10), we derive our final result:

Solving the the predetermined block (cont.)
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1. Write down your model in state space form
2. Apply the Jordan decomposition

3. Decouple the system into two blocks

4. Make sure the eigenvalues satisfy the Blanchard-Kahn conditions

5. End up with the two fundamental results:

Summarizing
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Readings
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This material is the application of the Blanchard-Kahn method to solve a DSGE
model.

Students are not required to replicate the demonstration of this method; however,
they are expected to understand the logic behind this method and be able to
simulate a model by using a computer and this method.
So no required reading is really necessary. However, if one wants to have a go and
see the first paper that explicitly shows how a DSGE model, without a closed form
solution, can be solved and simulated, go here for:

Blanchard, O. and Kahn, C. M. (1980). The solution of linear difference models
under rational expectations. Econometrica, 48(5), 1305-1311.
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